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Abstract
Hard-sphere systems are one of the fundamental model systems of statistical physics and
represent an important reference system for molecular or colloidal systems with soft repulsive
or attractive interactions in addition to hard-core repulsion at short distances. Density functional
theory for classical systems, as one of the core theoretical approaches of statistical physics of
fluids and solids, has to be able to treat such an important system successfully and accurately.
Fundamental measure theory is up to date the most successful and most accurate density
functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory
has been applied to many problems, tested against computer simulations, and further developed
in many respects. The literature on fundamental measure theory is already large and is growing
fast. This review aims to provide a starting point for readers new to fundamental measure theory
and an overview of important developments.
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1. Introduction

Density functional theory (DFT) for classical systems [1] is
a versatile and powerful approach to study the equilibrium
structure and corresponding thermodynamic quantities of
many-body systems subjected to external potentials. Estab-
lished in the 1970s, the basic formalism of classical DFT
closely follows the quantum mechanical formulation [2–4].
There is a mathematical rigorous framework that proves the
existence of a density functional of the grand potential �[{ρi}]
and shows that for the equilibrium density profiles {ρ0

i (r)} it
is minimal and equal to the grand potential �[{ρ0

i }] = � of
the system. For applications the main problem is to construct
a functional of the excess free energy, that contains all the in-
formation about the inter-particle interaction, for the system of
interest. It turns out that a fluid of hard spheres, beside being
of intrinsic interest, is an important reference system. At first,
within the framework of classical DFT, mainly functionals for
one-component systems were constructed. This changed in
1989.

In 1989, which was a remarkable year for classical
DFT, Rosenfeld introduced his fundamental measure theory
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(FMT) [5], which from the onset was a theory for hard-
sphere mixtures. Also in 1989 Vanderlick et al [6] generalized
Percus’ exact one-dimensional DFT for hard rods [7] to
mixtures. Rosenfeld’s FMT and the exact one-dimensional
functional share the same structure: both theories use weighted
densities, which are convolutions of the local densities with
geometrical weight functions, and in both theories the excess
free energy density is a function of these weighted densities.
Interestingly, Rosenfeld did not seem to be aware of the
exact hard-rod mixture functional, as he never cited it in his
work, but always referred to Percus’ earlier one-component
functional. Rosenfeld built FMT based on ideas from scaled-
particle theory (SPT) [8] and the insight into the bulk behavior
of hard-sphere mixtures from Percus–Yevick (PY) integral
equation theory [9, 10]. Shortly before Rosenfeld published his
hard-sphere functional, he arrived at a point of view in which
SPT and PY started to converge [11].

Similar to Tarazona and Evans [12], who used the step-like
Mayer- f function, that describes the interaction between two
hard spheres as a weight function, Rosenfeld constructed FMT
so that it makes use of the geometrical interpretation of Mayer
clusters in hard-sphere systems. Rosenfeld, however, made
use of the geometrical characteristics of individual particles
rather than of a Mayer- f function of a two-sphere interaction.
Although the interpretation of a Mayer cluster in terms of
fundamental geometrical measures of the individual particles
seems unnecessarily complicated, if only a one-component
system is considered, it was the essential step for a mixture
theory.

At first, when applied to hard-sphere fluids, FMT
seemed to succeed in solving all problems. Kierlik and
Rosinberg derived a FMT functional using different weight
functions, based on an alternative deconvolution of the Mayer-
f function [13]. Later it could be proven that both approaches
are equivalent [14].

However, FMT failed to account for the freezing transition
of the hard-sphere fluid into a solid. Rosenfeld et al analyzed
the reason for this shortcoming. It became clear that the excess
free energy density of a highly confined fluid diverged, which
first was fixed empirically [15, 16] by modifying that part of
the functional that caused the divergence. These ideas were
based on the dimensional crossover, i.e. confining a three-
dimensional fluid, described by a three-dimensional theory,
to two, one or even to zero dimensions by suitable confining
potentials. Later Tarazona and Rosenfeld fixed the problem
more systematically. Tarazona introduced tensorial weighted
densities [17] and thereby lifted the divergence of the original
FMT. Now FMT could account for the freezing transition.

One drawback of Tarazona’s tensorial FMT was that
the underlying thermodynamics was still based on the PY
equation of state, as is the case of Rosenfeld’s original
FMT. As a consequence the coexisting densities of the pure
system between the hard-sphere fluid and the solid were
clearly shifted [18–20] compared to the known simulation
results [21, 22]. This could be solved by empirically modifying
the underlying equation of state from the PY compressibility
equation to the expression of Mansoori–Carnahan–Starling–
Leland (MCSL) [23]. The resulting functional clearly
improved the results for the coexisting densities [18, 19].

As hinted at in this short introduction, FMT not only
succeeds in describing the properties of a hard-sphere fluid
and solid, and thereby acting as a suitable reference system for
systems with additional soft repulsive or attractive interactions,
but it also gives insight into problems of statistical physics
of excluded volume from a more fundamental point of
view. Although the framework of FMT introduces some
approximations, it is very appealing and powerful.

In this review I present the theory of FMT, some
applications and some hints about the implementation of a
FMT functional in simple geometries. In section 2 I recall a
few properties of DFT and give the Mayer-cluster expansion of
the excess free energy up to third order in the density. However,
this section is not meant as an introduction to DFT. Those who
are new to DFT should study [1] and [24] first. The first key
idea of FMT is presented in section 3, where the deconvolution
of the Mayer- f function into geometrical weight functions is
presented. Based on the deconvolution, Rosenfeld made an
ansatz for the excess free energy density. The extrapolation
from the exact low density limit to higher densities can be
performed in various ways, as discussed in section 4. Three
schemes are discussed: Rosenfeld’s derivation is presented first
in section 4.1. Ideas based on the dimensional crossover follow
in section 4.2. Finally, a derivation of FMT, based on a known,
accurate equation of state for mixtures, is given in section 4.3.
From a practical point of view, it seems natural to combine
ideas from all approaches in order to construct the functional
best suited for the given purpose, as indicated in section 4.4.

Some applications of FMT to the hard-sphere fluid,
section 5, and to the hard-sphere solid, section 6, are presented
to give the reader a flavor of the accuracy and reliability of
FMT. Since its introduction FMT has stimulated the field of
classical DFT in many respects. While this review is restricted
to the theory of hard-sphere mixtures, some examples to
developments of theories for other models with spherical
particles, inspired by FMT, are given in section 7. This section
is in no sense a complete review of recent developments. Some
practical aspects of the implementation of FMT are touched
upon in section 8, before I conclude in section 9.

With this outline, I hope to provide a good starting point
for the reader new to FMT as well as a reference for those who
are already experienced in applying FMT.

2. Density functional theory

In the framework of density functional theory [1, 24] it can
be shown rigorously for a ν-component mixture in the grand
ensemble that there exists a functional of the one-body density
profiles {ρi }, i = 1, . . . , ν, of the form

�[{ρi}] = F[{ρi}] +
ν∑

i=1

∫
d3r ρi (r)

(
V i

ext(r) − μi
)
, (1)

with μi and V i
ext(r) the chemical and the external potential

of species i , respectively. This functional has two important
properties: (i) for the equilibrium density profiles {ρ0

i (r)}
the functional reduces to the grand potential of the system
�[{ρ0

i }] = �. (ii) for any other density profiles the functional
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reduces to a value that is larger than the grand potential:
�[{ρi �= ρ0

i }] > �. These two properties can be summarized
by the variational principle

δ�[{ρi}]
δρi(r)

∣∣∣∣{ρi (r)=ρ0
i (r)}

= 0.

The functional F[{ρi}] of the intrinsic Helmholtz free energy
in equation (1) can be split into two parts:

F[{ρi}] = β−1
ν∑

i=1

∫
d3r ρi (r)(ln λ3

i ρi (r) − 1)

+Fex[{ρi }],
with β = 1/(kBT ), where kB is the Boltzmann constant and T
the temperature. The first term is the exactly known ideal gas
contribution to the intrinsic free energy and all the information
about interactions between particles is in the second term, the
excess (over the ideal gas) free energy. In contrast to the ideal
gas contribution, the excess free energy functional Fex[{ρi}]
is not known exactly, but for particles interacting via pair
interactions Vi j(r) an expansion at low densities can be given:

βFex[{ρi}] = − 1
2

∑

i, j

∫
d3 r1

∫
d3r2 ρi (r1)ρ j (r2) fi j(r12)

− 1
6

∑

i, j,k

∫
d3r1

∫
d3r2

∫
d3r3 ρi(r1)ρ j (r2)ρk(r3)

× fi j(r12) fik(r13) f jk(r23) + O(ρ4) (2)

with ri j = |ri − r j | and the Mayer- f function defined by

fi j (r) = exp(−βVi j(r)) − 1.

In the case of hard-sphere interactions fi j(r) has a purely
geometrical interpretation:

Vi j(r) =
{

∞ r < Ri + R j

0 otherwise,

⇒ fi j(r) =
{

−1 r < Ri + R j

0 otherwise,

i.e. the Mayer- f function marks the volume that is not
accessible to the center of one sphere, say of species i , close
to another sphere of species j . This excluded volume is the
volume of a sphere of radius Ri + R j .

3. Deconvolution

Interestingly, Vi+ j , the volume of two joined convex bodies i
and j , can in general be written as [25]

Vi+ j = Vi + Si R j + Ri S j + Vj , (3)

where Vk , Sk , and Rk are the volume, the surface area
and the mean radius of curvature of the body k = i, j ,
respectively. The volume of the joined body can be expressed
in terms of geometrical measures of the individual bodies.
In odd dimensions this integral relation between geometrical
measures can also be expressed locally, which leads to the
deconvolution of the Mayer- f function.

Rosenfeld noted that the Mayer- f function for hard-
sphere mixtures in 3d can be decomposed into [5]

− fi j(r) = ωi
3 ⊗ ω

j
0 + ωi

0 ⊗ ω
j
3 + ωi

2 ⊗ ω
j
1

+ ωi
1 ⊗ ω

j
2 − �ωi

2 ⊗ �ω j
1 − �ωi

1 ⊗ �ω j
2 (4)

with the weight functions given by

ωi
3(r) = 	(Ri − r),

ωi
2(r) = δ(Ri − r),

�ωi
2(r) = r

r
δ(Ri − r),

and ωi
1(r) = ωi

2(r)/(4π Ri ), ωi
0(r) = ωi

2(r)/(4π R2
i ), and

�ωi
1(r) = �ωi

2(r)/(4π Ri ). Here 	(r) is the Heaviside step
function and δ(r) is the Dirac-delta distribution. The symbol
⊗ in equation (4) denotes the three-dimensional convolution of
the weight functions

ωα
i ⊗ ω

β

j (r = ri − r j ) =
∫

dr′ ωα
i (r′ − ri )ω

β

j (r
′ − r j).

The deconvolution can be easily checked in Fourier space.
The connection between the deconvolution of the Mayer-

f function in equations (4) and (3) becomes apparent when
the weight functions are integrated. Integration over ωi

α(r)
gives the volume Vi (α = 3), the surface area Si (α = 2),
the mean radius of curvature Ri (α = 1) and the Euler
characteristics, which is simply 1 (α = 0), which are the
fundamental geometrical measures of a sphere of species i in
3d . It is this property of FMT that gives the approach its name.
The integrals over the vector-like weight functions vanish.

The deconvolution of the Mayer- f function derived by
Rosenfeld is not unique. Kierlik and Rosinberg found an
alternative that avoids the vector-like weight functions [13]:

− fi j (r) = ωi
3 ⊗ ω̃

j
0 + ω̃i

0 ⊗ ω
j
3 + ωi

2 ⊗ ω̃
j
1 + ω̃i

1 ⊗ ω
j
2 , (5)

where ωi
3 and ωi

2 are the same weight function that Rosenfeld
found but the remaining weight functions are somewhat more
complex than the Rosenfeld weights due to the presence of
derivatives of the Dirac-delta distribution. They are given
by [13]

ω̃i
1(r) = 1

8π
δ′(Ri − r),

ω̃i
0(r) = − 1

8π
δ′′(Ri − r) + 1

2πr
δ′(Ri − r).

While I will stick here to Rosenfeld’s weight functions,
there are two important points to make: (i) it was shown [14]
that the approaches based on Rosenfeld’s deconvolution,
equation (4), and on Kierlik and Rosinberg’s one, equation (5),
are equivalent. This in turn implies that (ii) by comparing
equation (4) with equation (5), it is possible to establish
connections between terms containing the vector-like weight
functions and corresponding scalar terms. This point will
become of great importance in section 4, when the functional
is derived by extrapolating from the exact low density limit to
high densities.

3
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The weight functions give rise to a set of weighted
densities {nα(r)} for the ν-component mixture. These are
defined as [5, 26]

nα(r) =
ν∑

i=1

∫
d3r ′ ρi (r′)ωi

α(r − r′), (6)

i.e. as the sum of the convolutions of the density profiles
of each species with its weight function. The exact one-
dimensional functional for hard-rod mixtures possesses weight
functions of this form [6]. Technically, the use of weight
functions makes FMT a functional of the weighted density
approximation (WDA) class. In the case of Rosenfeld’s weight
functions α labels four scalar and two vector weights. In
the bulk, where the density profiles in the absence of any
external field reduce to constant bulk densities ρi

bulk, both
vector weighted densities �n1 and �n2 vanish while the scalar
weighted densities reduce to the so-called SPT variables [8]:
n3 → ξ3 = ∑

i ρi
bulk4π R3

i /3, the total packing fraction,
n2 → ξ2 = ∑

i ρi
bulk4π R2

i , n1 → ξ1 = ∑
i ρi

bulk Ri and
n0 → ξ0 = ∑

i ρi
bulk.

The weighted densities, equation (6), are constructed so
that the low density of the excess free energy, the first line of
equation (2), can be recovered exactly:

lim
{ρi→0}

βFex[{ρi }] = − 1
2

∑

i, j

∫
d3r1

∫
d3r2 ρi(r1)

× ρ j (r2) fi j(r12)

=
∫

d3r {n0(r)n3(r) + n1(r)n2(r) − �n1(r) · �n2(r)}. (7)

The next order term, the second and third lines of equation (2),
however cannot be reproduced exactly with the weight
functions obtained from the deconvolution of the Mayer- f
function, because the structure of the integrals are not simple
convolutions. In fact, it can be shown that in order to calculate
the volume of a set of N � 4 overlapping spheres in d = 3, it
is in general necessary to consider two-, three-, and four-sphere
overlaps [27].

4. Extrapolation to higher densities

Rosenfeld suggested for the excess free energy functional the
form

βFex[{ρi}] =
∫

d3r ′ ({nα(r′)}) (8)

where , the reduced free energy density, is a function of the
weighted densities and not a functional. This form follows that
of the exact one-dimensional functional [7, 6] and recovers the
exact low density limit, equation (7).

As ansatz for  Rosenfeld, employed dimensional
analysis and used [5]

 = f1(n3)n0 + f2(n3)n1n2 + f3(n3) �n1 · �n2

+ f4(n3)n
3
2 + f5(n3)n2 �n2 · �n2. (9)

Each term in (9) has the dimension of a number density,
i.e. [length] −3. In order to ensure that the ansatz, equations (8)
and (9), recovers the deconvolution of the Mayer- f function,
equation (4), and the pair direct correlation function up to first

order in density, it is necessary to demand that the unknown
functions f1, . . . , f5 have low density expansions of the form
f1 = n3 + n2

3/2 + O(n3
3), f2 = 1 + n3 + O(n2

3), f3 = −1 −
n3+O(n2

3), f4 = 1/24π +O(n3), and f5 = −3/24π +O(n3).
It is possible to go one step further. Since the deconvolution
of the Mayer- f function due to Rosenfeld [5] and that due to
Kierlik and Rosinberg [13] are equivalent, one can conclude
that connections between the functions f2 and f3, and between
f4 and f5 should hold for arbitrary densities, not only in the
low density limit. In general, these conditions are

f3(n3) = − f2(n3) (10)

f5(n3) = −3 f4(n3), (11)

so that the ansatz, equation (9), simplifies to

 = f1(n3)n0+ f2(n3)(n1n2−�n1·�n2)+ f4(n3)(n
3
2−3n2�n2·�n2).

(12)
These equations are rather important because they justify the
use of thermodynamic relations, for which the vector weighted
densities vanish, to extrapolate the excess free energy density
from the known low density limit to higher densities.

The actual extrapolation to higher densities can be
performed in various ways. Rosenfeld used a differential
equation from scaled-particle theory. His derivation of FMT
is presented in section 4.1. The resulting functional, however,
failed to predict a freezing transition of the hard-sphere fluid
into a solid. A careful analysis showed that the functional
diverged in highly confined situations. This insight gave rise
to the dimensional crossover, in which the three-dimensional
functional was employed to study two-, one-, and zero-
dimensional density distributions. The dimensional crossover
was also used to construct a functional with new tensorial
weighted densities, which successfully could describe the
freezing transition, as discussed in section 4.2. A third way of
extrapolation uses a known equation of state as input and leads
to the White-Bear version of FMT, reviewed in section 4.3. Yet
another way, which will be mentioned here, but not discussed,
follows Percus [26], and starts from the knowledge of a bulk
pair direct correlation function to construct the excess free
energy functional [28].

4.1. Rosenfeld’s derivation

The functions f1, . . . , f5, or f1, f2 and f4 together with
conditions (10) and (11), can be determined by demanding that
the resulting functional satisfies a thermodynamic condition.
In the original derivation Rosenfeld used the SPT equation [8]

lim
Ri →∞

βμi
ex

Vi
= βp, (13)

with Vi = 4π R3
i /3, the volume of a spherical particle with

radius Ri , and μi
ex the excess chemical potential of species

i . This equation relates the excess chemical potential for the
insertion of a big sphere with radius Ri into a hard-sphere fluid
to the leading order term pVi of the reversible work necessary
to create a cavity big enough to hold this particle. The l.h.s.

4
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of equation (13) can be determined in terms of the weighted
densities from equation (8)

βμi
ex = ∂

∂ρi
=

∑

α

∂

∂nα

∂nα

∂ρi
.

Due to the geometrical meaning of the weight functions, one
finds ∂n3/∂ρi = 4π/3R3

i ≡ Vi , ∂n2/∂ρi = 4π R2
i ≡ Si ,

∂n1/∂ρi = Ri , and ∂n0/∂ρi = 1. In the limit Ri → ∞, all but
the first term vanish and one obtains

lim
Ri →∞

βμi
ex

Vi
= ∂

∂n3
= βp. (14)

The equation of state can be obtained from the thermodynamic
bulk relation �bulk = −pV . Since the grand potential density
in the bulk is �bulk/V =  + fid − ∑

i ρi
bulkμi one obtains

βp = − +
∑

α

∂

∂nα

nα + n0. (15)

The last term in equation (15), n0, results from the ideal
gas contribution. Combining these results leads to the SPT
differential equation

∂

∂n3
= − +

∑

α

∂

∂nα

nα + n0.

By collecting all terms proportional to n0 one sees that the
differential equation for f1(n3) takes the form

f ′
1(n3)(1 − n3) = 1,

where ′ indicates a derivative w.r.t. n3. This equation is solved
by

f1(n3) = const1 − ln(1 − n3),

with an integration constant const1 that vanishes, in order to
recover the low density limit. It is easy to identify and solve
the differential equations for the remaining functions

f ′
2(n3)(1 − n3) = f2(n3) ⇒ f2(n3) = const2

1 − n3

and

f ′
4(n3)(1 − n3) = 2 f4(n3) ⇒ f4(n3) = const3

(1 − n3)2
.

The integration constants are chosen so that the correct
behavior at low densities is recovered. The solution found by
Rosenfeld [5], denoted by RF, is

f RF
1 (n3) = − ln(1 − n3)

f RF
2 (n3) = 1

1 − n3

f RF
4 (n3) = 1

24π(1 − n3)2

and it is straightforward to see that these solutions recover the
low density limit. The full excess free energy density then is

RF = −n0 ln(1 − n3) + n1n2 − �n1 · �n2

1 − n3
+ n3

2 − 3n2�n2 · �n2

24π(1 − n3)2
.

(16)

It is remarkable that the Rosenfeld functional generates as
output the mixture Percus–Yevick compressibility equation of
state and the PY direct correlation functions c(2)

i j (r) [5].
While the original Rosenfeld functional, as described

in this subsection, turns out to accurately describe the
structure and thermodynamics of the fluid phase of hard-
sphere mixtures [29], it failed to account for the hard-sphere
crystal [5]. One possible interpretation of a crystal is that each
particle on a lattice is confined to a small cavity, created by the
neighbor particles, that can hold only a single particle. Hence,
in order to describe a crystal, a functional has to be able to cope
with strong confinement.

4.2. Dimensional crossover

The idea of dimensional crossover is simple, yet very powerful.
The hypothetical exact functional for hard spheres in three
dimension would reduce to the hypothetical exact functional
in two dimensions, if the density distribution inputted into
the three-dimensional functional was restricted to a plane,
i.e. ρi (r) = δ(z)ρi (x, y). Furthermore, the hypothetical exact
functional for hard spheres in three dimensions would recover
the exact one-dimensional functional if the density distribution
inputted into the three-dimensional functional was restricted to
a line, i.e. ρi (r) = δ(z)δ(y)ρi (x).

Kierlik and Rosinberg [30] asked for the FMT functional
a slightly simpler question, thereby following Tarazona et al
[31], who first applied the idea of dimensional crossover for
a different WDA functional. The idea was quickly picked
up by Rosenfeld [32]. Kierlik and Rosinberg considered the
two-dimensional limit by using a three-dimensional density
distribution of the form ρi (r) = δ(z)ρ(2D)

i , with homogeneous
two-dimensional bulk densities ρ

(2D)
i . The resulting excess

free energy density was then compared with accurate,
known results. Note that the homogeneous two-dimensional
system is described as an inhomogeneous, highly confined
three-dimensional system. Hence, the weighted densities,
equation (6), which can be calculated straightforwardly,
depend on z [16]. The resulting excess free energy can be
obtained from equation (8) through integration of the excess
free energy density. The resulting excess free energy per
particle differs in functional form significantly from the rather
accurate SPT expression but numerically agrees with it rather
nicely [30, 32]. As a side note I mention that the two-
dimensional limit of the White-Bear version of FMT, described
in section 4.3, results in an even more complex functional form
of the excess free energy density, which numerically is even
closer to the SPT result.

The one-dimensional limit of the three-dimensional FMT
functional can be taken by considering density distributions
of the form ρi (r) = δ(x)δ(z)ρ(1D)

i . Analogous to the two-
dimensional limit, it is straightforward to calculate the three-
dimensional weighted densities [16]. However, the integral of
the excess free energy density, equation (8), does not exist. The
integration of the first two terms of equation (16) recovers the
exact one-dimensional excess free energy, while the third term
diverges [30, 32].

A first step in resolving this severe problem was to
consider also the zero-dimensional limit, in which a small

5
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cavity is studied that can hold only a single sphere. The
thermodynamics of such a small cavity is known exactly and it
was found numerically that the exact zero-dimensional limit
for a spherical cavity can be recovered if the last term of
equation (16) is replaced by [16]

0D
3 = 3n3

2ξ(1 − ξ)2

24π(1 − n3)2
, (17)

with ξ(r) = |�n2(r)/n2(r)|. While the divergence in the one-
dimensional limit is removed and the exact zero-dimensional
limit is recovered, this empirical modification of FMT has
the unfortunate side-effect of changing the bulk properties
of the three-dimensional fluid. In the bulk limit ξ → 0,
so that equation (17) vanishes [16]. Still, the study of the
zero-dimensional limit provided the insight that the divergence
of the third term of equation (16) can be resolved by anti-
symmetrizing it. As alternative to equation (17), Rosenfeld et al
suggested [15, 16]


asym−q
3 = n3

2(1 − ξ)q

24π(1 − n3)2
, (18)

with q � 2. The anti-symmetrized expression with q = 3
makes only small errors in the zero-dimensional limit and
describes the three-dimensional fluid accurately, because the
deviation from the original expression in equation (16) is of
the order of ξ 4 [15, 16]. This empirical modification of the
Rosenfeld functional allowed the first studies of hard-sphere
crystals with FMT [16].

One interesting property of the zero-dimensional limit is
that its free energy does not depend on the shape of the cavity,
i.e. the confining potential, but on the fact that the cavity can
hold only a single particle. While equation (18) works for
spherical cavities, it still would diverge for small cavities of
peculiar shape that can hold only a single particle [33].

A FMT functional, built on the idea to recover the exact
zero-dimensional limit even for some peculiar shaped cavities,
the so-called lost cases, was suggested by Tarazona and
Rosenfeld [33, 34]. This idea results in a functional for the
one-component hard-sphere system that shares the first two
terms with the original Rosenfeld functional, equation (16), but
modifies the third term. The third term is constructed so that
it vanishes in the one-dimensional limit [33]. Unfortunately,
this functional, similar to the results of the empirical approach
in [15, 16], cannot recover important bulk properties of the
hard-sphere fluid. While the equation of state of the functional
is the PY compressibility equation, the direct correlation
function differs severely from the PY result [17].

Tarazona resolved this problem by introducing an
additional tensorial weight function [17], which in the notation
of [35], is given by

ωi
m2

(r) =
(

1

r 2
rr − 1

3
1̂

)
ωi

2(r), (19)

which gives rise to a tensorial weighted density nm2 . 1̂ denotes
the unit matrix. The modified third term of the Tarazona
FMT, T

3 , makes use of the unique combination of the scalar,

vectorial, and tensorial weighted densities n2, �n2, and nm2 ,
respectively, that in the bulk limit recovers the PY pair direct
correlation function [36]. It is given by [17, 35]

T
3 = {n3

2 − 3n2�n2 · �n2 + 9(�n2nm2 �n2 − 1
2 Tr(n3

m2
))}

× 1

24π(1 − n3)2
. (20)

This version of FMT with a tensorial weighted density
systematically corrects the problem of the diverging excess free
energy for highly confined particles and allows for a successful
description of the hard-sphere solid [17].

Interestingly, the tensorial weighted density in its original
form [17] also appears in a FMT functional for non-spherical
hard particles [37], which systematically improves Rosenfeld’s
functional for convex hard bodies [38, 39]. The dimensional
crossover was analyzed numerically by Gonzalez et al [40].

4.3. The White-Bear version of FMT

In contrast to the original Rosenfeld derivation, it is possible
to use a mixture equation of state, if it can be written solely in
terms of the SPT variables, as an input to the extrapolation
from the low density limit to higher densities. To this end
the known equation of state is combined with equation (15),
the expression for the pressure within FMT. This approach
employs as starting point, of course, the same weight functions
and weighted densities, and the same ansatz as the Rosenfeld
functional.

An obvious choice for the mixture equation of state
is the Mansoori–Carnahan–Starling–Leland (MCSL) equation
of state [23], which is a generalization to the ν-component
hard-sphere fluid of the accurate, one-component Carnahan–
Starling–Boublı́k equation of state pCS [41, 42], given by

βpMCSL = n0

1 − n3
+ n1n2

(1 − n3)2
+ n3

2

12π(1 − n3)3

− n3n3
2

36π(1 − n3)3
. (21)

Note that the final term in (21) is absent in the PY
compressibility equation of state. Compared to computer
simulation data the MCSL pressure is significantly more
accurate than the PY result [43].

The differential equation for determining the three
unknown functions f1, f2, and f4 of ansatz (12) follow from

βpinput = − +
∑

α

∂

∂nα

nα + n0, (22)

with the sum over the scalar weighted densities only. Again,
one obtains differential equations for f1, f2 and f4 by
collecting all the terms proportional to n0, n1n2, and n3

2,
respectively. For pinput = pMCSL these differential equations
can be solved easily and one finds f1(n3) = f RF

1 (n3), f2(n3) =
f RF
2 (n3) and

f4(n3) = n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

.
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The excess free energy density is obtained by combining f1,
f2, and f4 with equations (10) and (11) to give [19]

WB = −n0 ln(1 − n3) + n1n2 − �n1 · �n2

1 − n3

+ (n3
2 − 3n2�n2 · �n2)

n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

, (23)

which should be compared with the original Rosenfeld form,
equation (16). This functional was named after the institution
in Bristol in which it was derived, as mentioned in the
acknowledgments of [19].

Like the Rosenfeld functional this functional, the White-
Bear version of FMT, recovers the exact low density
limit. Interestingly, this excess free energy density was
first mentioned in 1990 as a side note by Kierlik and
Rosinberg [13] using their weight functions. Only much later
was it put to use. Tarazona used a one-component version,
using his own notation, to study the hard-sphere solid [18].
Lang [20] employed the White-Bear version of FMT [19]
before publication during his PhD work. Slightly later the
White-Bear version of FMT was also published by Yu et al
[44].

The SPT differential equation (14), which is of central
importance to the derivation of the original Rosenfeld
functional, obviously cannot be satisfied by the White-
Bear version of FMT. Since equation (14) is an exact
thermodynamic relation, this is a shortcoming of FMT. With
the weight functions of FMT the only non-trivial equation
of state that satisfies equation (14) is the PY compressibility
result. Any equation of state that is more accurate than PY,
and which can be written in terms of the SPT variables, must
lead to an inconsistency in equation (14). For the White-Bear
version of FMT, one finds from equation (23) in the bulk limit
that [19]

∂

∂n3
= n0

1 − n3
+ n1n2

(1 − n3)2
− n3

2(2 + n3(n3 − 5))

36πn2
3(1 − n3)3

− n3
2 ln(1 − n3)

18πn3
3

, (24)

which evidently is different from the MCSL equation of
state (21). The difference arising from this inconsistency
was examined within the context of the one-component
fluid [19]. The deviation between pCS and equation (24) in
the fluid regime is at most 2%. In contrast, the Percus–
Yevick compressibility equation of state pc

PY overestimates the
pressure of a hard-sphere fluid close to freezing by up to 7%.

Based on the observation that the MCSL equation
of state leads to an excess free energy density that is
slightly inconsistent, recently a new generalization of the
Carnahan–Starling–Boublı́k equation of state to mixtures was
proposed [45]. The idea of this equation of state is simple.
Consider the following loop: start with an equation of
state, expressed in the SPT variables that reduce to pCS,
the Carnahan–Starling–Boublı́k pressure [41, 42], in the one-
component case and integrate it to obtain the excess free energy
density . Within FMT the derivative of  w.r.t. n3 should
be again the equation of state, i.e. equation (14). Only with
the PY compressibility equation of state is it possible to run

this loop consistently for a mixture. The new equation of state
minimizes the inconsistency obtained in this loop. It is given
by [45]

βpCSIII = n0

1 − n3
+ n1n2

(
1 + 1

3 n2
3

)

(1 − n3)2
+ n3

2

(
1 − 2

3 n3 + 1
3 n2

3

)

12π(1 − n3)3
.

(25)
This equation of state is found to represent data for binary
and ternary mixtures obtained by computer simulations more
accurate than the MCSL result [45]. Based on this new
equation of state, using equation (22) with pinput = pCSIII an
excess free energy functional can be derived, which improves
the level of self-consistency [46]:

WBII = −n0 ln(1 − n3) + (n1n2 − �n1 · �n2)
1 + 1

3φ2(n3)

1 − n3

+ (n3
2 − 3n2�n2 · �n2)

1 − 1
3φ3(n3)

24π(1 − n3)2

with

φ2(n3) = 1

n3
(2n3 − n2

3 + 2(1 − n3) ln(1 − n3)),

and

φ3(n3) = 1

n2
3

(2n3 − 3n2
3 + 2n3

3 + 2(1 − n3)
2 ln(1 − n3)).

This functional, the White-Bear version of FMT mark II, is
similar in complexity as the White-Bear version, equation (23),
or the Rosenfeld functional, equation (16), but is constructed
such that for a one-component bulk fluid it reduces to the
Carnahan–Starling–Boublı́k equation of state:

∂

∂n3
= βpCS.

4.4. FMT toolbox

Within the framework of FMT there are different approaches
for extrapolating from low to high densities, as has been
discussed in this section. Some ideas seem to be more
systematic or more esthetic than others. However, it is
important to keep in mind that one of the most important
goals of FMT is to provide an accurate and versatile
numerical tool to describe the structure and corresponding
thermodynamic quantities of inhomogeneous hard-sphere
mixtures. Rosenfeld’s original FMT [5] is based on a few
surprisingly simple, yet powerful, principles. The resulting
functional allows one to study the fluid phase, but fails to
account for the freezing transition. Functionals constructed so
that the zero-dimensional limit, in which a particle is confined
in a small cavity, is fully respected, like the functional based on
equation (17) of that of [33], enable FMT to describe freezing,
but at the same time some bulk properties of the hard-sphere
fluid get spoiled. Some additional changes are required to fix
these shortcomings: equation (17) is replaced by equation (18)
or a tensorial weight function, equation (19), is added to the
set of FMT weight functions [17] in order to improve the
functional of [33].
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Figure 1. The density profiles of a pure hard-sphere fluid at a planar hard wall with bulk packing fraction of (a) η = 0.4257 and (b)
η = 0.4783. Contact with the wall is at z = σ/2. The original Rosenfeld version (dotted line), the White-Bear version (full line) and the
White-Bear version mark II (dashed line) are compared to data from MC simulations (symbols) [48]. The agreement among the various
versions of FMT is good and the simulation data are very well described for low and moderate packing fractions. At high packing fractions,
see (b), the overall agreement between FMT and simulations is still good, but, especially for the first peak at z ≈ 1.5σ , clear deviations
between FMT and simulations exist.

From a practical point of view FMT provides a toolbox
made from a few building blocks that could be combined
depending on the objective of the numerical calculation. On
the one hand FMT has the functions f1(n3), . . . , f5(n3) that
only depend on the local packing fraction n3. These building
blocks determine to a large degree the underlying equation
of state, i.e. PY, MCSL or equation (25). On the other
hand there are functions of the other weighted densities,
n0, . . . n2, �n1, �n2, and possibly nm2 , which ensure that the bulk
direct correlation functions and the behavior of the fluid under
strong confinement are sensible.

As the derivation of the White-Bear version of FMT
started from the same ansatz as Rosenfeld did, it obviously
faces problems when applied to the freezing transition.
However, it is possible to apply the empirical modification
of [15, 16], as was done in [47], or the systematic change due to
Tarazona [17], as was done in [19]. For example, by replacing
the term (n3

2 − 3n2�n2 · �n2) in equation (23) by the numerator
of Tarazona’s expression, equation (20), the third term of the
White-Bear-tensor functional would be given by [19, 18, 20]


WB,T
3 = {n3

2 − 3n2�n2 · �n2 + 9(�n2nm2 �n2 − 1
2 Tr(n3

m2
))}

× n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

.

Of course other combinations of the different building
blocks are possible, if required by the application.

5. Properties of the fluid phase

DFT allows one to study the inhomogeneous structure of
a fluid subjected to an external potential and corresponding
thermodynamic quantities within the same framework.

Before applying a functional to a complicated problem, its
performance in simple, well understood situations should be
established. In order to verify the accuracy of a particular
functional it is helpful to compare DFT results to data from
other approaches, such as computer simulations. Often this is
done solely for density profiles. However, it is important to
also verify the accuracy of thermodynamic quantities, such as
the wall surface tension.

A standard problem for FMT is the prediction of the
structure and wall surface tension of a hard-sphere fluid close
to a planar hard wall. It is known that the density at the wall,
the so-called contact density, equals the bulk pressure of the
system divided by kBT . Since FMT is a WDA functional, the
contact theorem, as discussed below, is satisfied. Therefore
it is possible to conclude that close to the wall a version of
FMT that is based on the Carnahan–Starling–Boublı́k equation
of state [41, 42] should be more accurate compared to those
based on the Percus–Yevick pressure. While for low and
intermediate bulk packing fractions the difference between
these two equations of state is rather small, it becomes more
important close to the bulk freezing density.

In figure 1 two density profiles of a pure hard-sphere fluid
at bulk packing fraction η = 0.4257 (a) and η = 0.4783
(b), as obtained from the original Rosenfeld functional (dotted
line), from the White-Bear version of FMT (full line) and from
the White-Bear version of FMT mark II (dashed line), are
compared to data from Monte Carlo (MC) simulations [48]
(symbols). Overall, the agreement between the various
versions of FMT and the MC data is very good. One has
to look closely to see differences among these results. For
η = 0.4257, the density around the first peak is highlighted
in the inset of figure 1(a). There are small deviations between
FMT and the simulation data, and it seems as if the original
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Figure 2. Cut through the density profile ρ(x, z) of a hard-sphere fluid with η = 0.3665 in a hard wedge with opening angle of 90◦ from the
Rosenfeld FMT (dotted line), the White-Bear version of FMT (full line) and MC simulations (symbols) [47]. The coordinates x and z are
defined as indicated in the inset of (a), where z is relative to the surface and z = σ/2 denotes contact. In the middle of the wedge, x = 0, the
contact density is extremely high. The Rosenfeld FMT overestimates the contact density, while the White-Bear version of FMT represents the
simulation data accurately. In a second cut at x = 0.5σ , (b), the fluid structure, which is quite different from that at a planar wall—see
figure 1—is well described by FMT. Again the White-Bear version (full line) is somewhat closer to the simulation data than the Rosenfeld
FMT (dotted line).

Rosenfeld version is slightly more accurate in describing the
first peak than the modifications of FMT based on more
accurate equations of state. However, if one looks again at a
higher packing fraction, it becomes clear that this difference
is insignificant compared to the deviation between FMT and
simulations—see figure 1(b) for η = 0.4783. Note that this
problem persists with all versions of FMT, also those with
tensorial weights. In the inset of figure 1(b) one can see
the difference, at sufficiently high bulk densities, between the
various density profiles close to contact.

The MC data of a hard-sphere fluid close to a planar hard
wall are valuable benchmark data. However, it is important
to realize that for this simple geometry the contact theorem,
which fixes the density at the wall on the one hand and the
bulk density on the other hand, clearly restricts the structure
of the profile. In a more complicated geometry the differences
between different versions of FMT become more pronounced,
since the constraints to the density profiles close to the wall
due to the contact theorem are less stringent. An example, for
a hard-sphere fluid with a bulk packing fraction of η = 0.3665
in a hard wedge geometry with opening angle of 90◦, is shown
in figure 2. The geometry and the definition of the coordinates
x and z are shown in the inset of (a). The quality of the density
profile ρ(x, z) was verified by comparing the density profiles
of FMT predictions with MC simulations. Two cuts through
the profile are shown in figure 2. The agreement between FMT
and MC simulations is very good in the middle of the wedge, at
x = 0, where the contact density is extremely high, as well as
at x = 0.5σ , where the structure is still pronounced, and quite
different from the structure of a hard-sphere fluid at a planar
wall, as shown in figure 1. Close to contact at z = 0.5σ there
is a clear difference between the prediction of the Rosenfeld

functional (dotted line) and the White-Bear version of FMT
(full line). The difference between different versions of FMT
are more pronounced in geometries that are more complicated,
because the contact theorem is a less severe constraint there
than in the planar wall case. The agreement between results of
the White-Bear version of FMT and the simulation data were
found to be better than those between the Rosenfeld FMT and
MC [47].

For hard-sphere mixtures it is more difficult to perform a
systematic comparison between FMT and simulations. Even
for a binary mixture with the size ratio and two bulk densities
as the only parameters, the parameter range is large and
benchmark simulation data are available only for very few
parameters—see e.g. [49]. The data of [49] are very well
captured by FMT [29]. One example for density profiles of a
binary mixture with size ratio σb = 3σs and packing fractions
ηs = 0.0100 and ηb = 0.3576 is shown in figure 3. Results
of different versions of FMT (lines) are compared to data from
MC simulations (symbols). The agreement among the different
version of FMT and between FMT and MC simulations is very
good. In the inset of (b) one can see small deviations between
the different FMT results close to contact.

If the size ratio becomes more asymmetric, then the
FMT weight functions become more troublesome, as was
demonstrated by Cuesta et al [50], who constructed, especially
for the binary case, a FMT functional with new tensorial
weights. The authors compare result for the new functional
to those of an earlier version [17] and concluded that despite
the effort put into the new tensorial weights and the resulting
higher complexity of the functional, the difference between
the results of the new and simpler versions of FMT is rather
negligible [50, 36].
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Figure 3. Density profiles at a planar hard wall of the small (a) and big (b) spheres of a binary mixture with size ratio σb = 3σs and packing
fractions ηs = 0.0100 and ηb = 0.3576. Contact of the small spheres and the big spheres with the wall is at z = σs/2, and z = σb/2 = 3σs/2,
respectively. The predictions of different versions of FMT (lines) are compared to MC simulation data from [49]. The agreement between
FMT and MC simulations (symbols) is very good. The difference between the different versions of FMT is rather small.

The phase behavior of binary hard-sphere mixtures was
studied with computer simulations [51, 52]. Similar to the
one-component system it was found that a binary hard-sphere
mixture possesses a fluid phase and a crystal phase. If the
size ratio of the small and big spheres becomes sufficiently
asymmetric, there can be a fluid–fluid phase separation which,
however, is always found to be meta-stable compared to fluid–
crystal coexistence [51, 52].

The structure of polydisperse hard-sphere mixtures close
to a planar hard wall can also be described with FMT [53].

5.1. Sum-rules

Sum-rules are statistical mechanical connections between
microscopic properties of a system, such as the density profiles,
and thermodynamic quantities, such as the pressure. Here I
discuss two examples, which are useful for testing the internal
consistency of a DFT program. The first sum-rule is the
contact theorem, which connects the contact density of a fluid
at a hard wall, or the inhomogeneous structure close to a soft
wall, to the bulk pressure. It can be shown that the contact
theorem is satisfied by WDA functionals [54, 12]. The second
sum-rule is Gibbs’ adsorption theorem, which connects the
excess adsorption at a wall to the fluid–wall surface tension.
Beside establishing connections between different quantities,
these sum-rules are of great practical importance, because they
allow one to test whether a DFT implementation can correctly
compute both density profiles and thermodynamic quantities.

The contact theorem at a planar wall, modeled by external
potentials V i

ext(z) = V i
ext,hw(z) + V i

ext,soft(z) with hard wall
parts, V i

ext,hw(z), and soft parts, V i
ext,soft(z), is given by

∑

i

ρi(z = R+
i ) = βp −

∑

i

∫
dz ρi (z)

dβV i
ext,soft(z)

dz
, (26)

where ρi (z = R+
i ) denote the densities of species i at contact

with the wall and the derivative on the r.h.s. acts only on the
soft part of the external potentials—the derivative of the hard
wall potentials V i

ext,hw gave rise to Dirac-delta distributions,
which are accounted for by the l.h.s. of equation (26). If
the wall is hard, then the integral over the density profile on
the r.h.s. of equation (26) vanishes and the contact theorem
simplifies to the sum over the contact densities, which equals
the bulk pressure. If the wall is soft, without a hard core, then
the sum over the contact densities vanishes on the l.h.s. of
equation (26).

Depending on the version of FMT, the underlying bulk
pressure differs. This in turn influences the inhomogeneous
structure close to the wall. The PY equation of state is
less accurate than the MCSL pressure. Equation (25) for
mixtures is more accurate than the MCSL pressure. Besides
the accuracy of the underlying equation of state, compared to
computer simulations, the contact theorem can be employed
to verify if a DFT implementation can correctly compute
the structure, because equation (26) can only be satisfied
for various external potentials and at various values of bulk
densities, if the density profiles numerically calculated by
minimizing the DFT are correct. Without too much numerical
effort, the contact theorem can be satisfied to 4 significant
figures. With some additional effort, a better agreement is also
possible.

Generalization of the contact theorem to spherical or
cylindrical geometry is straightforward [57–59].

The Gibbs adsorption theorem connects the excess
adsorption �i of species i with the derivative of the surface
tension γ w.r.t. the chemical potential of species i :

�i =
∫

dz (ρi (z) − ρbulk
i ) = −

(
dγ

dμi

)

V,T

, (27)
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Figure 4. The wall surface tension of a hard-sphere fluid at a planar
hard wall as a function of the bulk packing fraction η. Numerical
FMT results (full, dashed, and dotted lines) and analytic results from
the bulk route (dashed–dotted line) are compared to computer
simulations from Heni et al [55] (circles) and from Henderson et al
[56] (squares). There is very good agreement between FMT and
simulations. The difference between the different FMT results is
rather small and the simulation data do not allow one to differentiate
clearly between the approaches.

with the wall surface tension, which is defined by

γ = 1

A
(� + pV ). (28)

Note that the wall surface tension is not uniquely defined, but
rather depends on the definition of the system volume V . If
the system volume is defined as the volume accessible to the
centers of the spheres, i.e. starting at z = Ri (see figure 1),
then the wall surface tension of a pure hard-sphere fluid is
negative and the resulting excess adsorption is positive. Note
that this definition, which is often used in the literature for
the pure hard-sphere fluid, can be problematic in the case of
mixtures, since the centers of different species have different
volumes available. If the system volume V starts at z = 0,
which is independent of the particle size in the case of hard-
sphere mixtures and which is the definition used here, then
the surface tension is positive and the corresponding excess
adsorption is negative. The wall surface tension, according to
this definition for a pure hard-sphere fluid, is shown in figure 4.
FMT results (lines) are compared to computer simulations
from Heni et al [55] (circles) and from Henderson et al [56]
(squares). The simulation data from Henderson et al had to be
transformed to the volume definition used here. The agreement
between FMT and simulation data is excellent. Unfortunately
this comparison does not allow one to decide which version of
FMT is most accurate.

Combining ideas from SPT [8] and morphological
thermodynamics [60] it is possible to obtain an analytic
approximation of the wall surface tension for a hard-sphere

Figure 5. The excess adsorption of a hard-sphere fluid at a planar
hard wall as a function of the bulk packing fraction η. Numerical
FMT results (full, dashed, and dotted lines) and analytic results from
the bulk route (dashed–dotted line) are compared to computer
simulations from Henderson et al [56] (squares). The difference
between the different FMT results is larger than those for the wall
surface tension γ , but still the simulation data do not allow one to
differentiate clearly between the approaches. The lines were
calculated from the density profiles and agree very well with the
excess adsorption obtained from Gibbs’ adsorption theorem.

mixture at a planar hard wall. One finds [47]

βγ = ∂

∂n2
,

which is also valid for mixtures [61]. For the bulk excess
free energy of the White-Bear version of FMT mark II [46]
the resulting approximation is shown in figure 4 as a dashed–
dotted line. The agreement with numerical FMT results and
with simulation data is very good.

Note that since the wall surface tension and the excess
adsorption are not experimentally measurable, the definition
of the system volume is arbitrary. Especially for the
one-component fluid, both definitions aforementioned are
equivalent and results from one definition can easily be
translated into the other definition. However, in order for the
adsorption theorem to be satisfied it is essential that the volume
V in equation (28) has to coincide with the area A times the
integration range in equation (27).

In figure 5 the excess adsorption, obtained from the
density profiles, of a pure hard-sphere fluid at a planar hard
wall is shown as a function of the bulk packing fraction η. FMT
results (lines) are compared to computer simulation data from
Henderson et al [56] (squares). The small difference between
FMT results in the wall surface tension are more pronounced
in the excess adsorption. Unfortunately, it is not possible to
clearly decide which FMT result is most accurate.

Using the analytic approximation of the wall surface
tension it is straightforward to calculate the excess adsorption
within the same bulk route:

�i = − ∂

∂βμi

(
∂

∂n2

)
.
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Table 1. Coexisting densities and the pressure at coexistence of a
one-component hard-sphere fluid and its crystal obtained from
different versions of FMT. While a modification of the original
Rosenfeld FMT, such as the empirical one given in equation (18),
denoted as Rosenfeld-q3, or the tensor weighted densities are
necessary to obtain a stable hard-sphere crystal, the coexisting fluid
(f) and solid (s) density, ρf and ρs, respectively, and the pressure at
coexistence βpcoex depend sensitively on the underlying
thermodynamics. For the PY equation of state, denoted by
Rosenfeld-tensor [17, 18, 20], the coexisting densities are somewhat
removed from the simulation data, while for the CS equation of state,
denoted by White-Bear-tensor [18–20], the agreement with
simulations is good. Interestingly, the coexisting densities of the
Rosenfeld-q3 version [16] are even closer to the simulation results.

Approach ρfσ
3 ρsσ

3 βpcoexσ
3

Simulation Hoover et al [21] 0.940 1.040 11.7
Simulation Noya et al [22] 0.938 1.037 11.54
Rosenfeld-tensor [17, 18, 20] 0.892 0.985 9.9
Rosenfeld-q3 [16] 0.938 1.037 12.3
White-Bear-tensor [18–20] 0.934 1.023 11.3

For a one-component hard-sphere fluid the prediction of the
bulk route using the excess free energy density of the White-
Bear version of FMT mark II is shown in figure 5 as a dashed–
dotted line. The agreement with the numerical results and with
simulation data is good.

To check the validity of the implementation of the FMT
program, I also verified that Gibbs’ adsorption theorem is
satisfied, i.e. the integral over the density profiles agrees with
the derivative of the wall surface tension w.r.t. the chemical
potential. A small error in the calculation of the density profiles
or of the wall surface tension would result in a violation of
equation (27).

6. Properties of the crystal

Beside bulk and inhomogeneous fluids, it is possible to study
properties of the hard-sphere crystal within the framework of
FMT. Other than a free minimization of the density profile,
which is employed to determine the structure of the fluid phase,
the crystal is usually studied using a parameterized density
profile. For a one-component hard-sphere (bulk) solid the usual
Gaussian form of the density profile is given by [62]

ρ(r) =
(α

π

) 3
2
∑

{ �R}
e−α(�r− �R)2

, (29)

with the mean peak width α−1/2. The sum in equation (29)
is taken over all points { �R} of the lattice. Clearly the lattice
symmetry is an input to this approach. In the case of a hard-
sphere crystal the symmetry is known to be fcc.

For Gaussian peaks it is possible to calculate the weighted
densities analytically [16], which can be inputted into an
appropriate FMT functional, i.e. either an anti-symmetrized
functional, equation (18), or one with tensor weights,
equation (20). The grand potential functional with vanishing
external potential at a given μ is minimized with respect to
both the lattice size and the Gaussian parameter α. From
the minimization the properties of the hard-sphere solid, such

Figure 6. The equation of state βp/ρ, and in the inset the Gaussian
parameter α, of the hard-sphere fcc solid as a function of the packing
fraction η. The full lines denote the results of the White-Bear-tensor
version of FMT. The FMT results for the equation of state compare
well with MD results for 500 particles (squares) [63], and those for
the Gaussian parameter α compare well with MD results for 500
particles (squares) and extrapolations to N → ∞ (circles) [64].

as the equation of state or the peak width α−1/2, follow. In
addition it is possible to determine the coexisting densities ρf

and ρs between the hard-sphere fluid (f) and solid (s).
In table 1 the densities of the coexisting fluid, ρf, and

solid, ρs, from different versions of FMT are compared to
the classic simulation results of Hoover et al [21] and more
recent data by Noya et al [22]. Tarazona’s modification [17]
with tensor weighted densities of the original Rosenfeld
FMT, can describe the hard-sphere solid. Its underlying
thermodynamics corresponds to the Percus–Yevick results,
which becomes inaccurate at higher densities. Accordingly,
the coexisting densities and the pressure at coexistence differ
significantly from the simulation data [18, 20]. The Rosenfeld-
q3 functional, equation (18) with q = 3, also builds on
PY thermodynamics. Surprisingly, the coexisting densities
obtained by this functional [16] are in very good agreement
with simulations. The pressure at coexistence, however, is
clearly overestimated. Using the White-Bear version of FMT
with tensor weights the agreement of the calculated coexisting
densities and the pressure at coexistence with simulations,
especially the more recent ones [22], is very good [18–20].

The agreement between DFT and MD results for the
equation of state of the solid is excellent, as shown in figure 6.
The full line denotes results of the White-Bear-tensor results
and the symbols those from MD computer simulations [63] for
500 particles.

The Gaussian parameter α, as a function of the packing
fraction η, is directly obtained from the minimization of the
functional. It is shown in the inset of figure 6. The agreement
between the DFT results and the MD data for 500 particles
(squares) and data extrapolated to N → ∞ (circles) of [64] is
very good. The equation of state and the Gaussian parameter
based on Tarazona’s Rosenfeld-tensor functional are almost
identical with the results shown in figure 6.
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Clearly, it is possible to improve the description of the
solid in various ways. For example, the parameterization of the
density profile in equation (29) can be improved by replacing
the Gaussian with a general, spherical symmetric function
f (r). Groh et al [65, 66] did this and minimized the functional
in order to determine f (r). Tarazona took effects of anisotropy
in the density profile of the solid into account [17] and thereby
improved the simple form given in equation (29) in a different
way. A free minimization of FMT for the density profile of a
crystal, as was performed for a different WDA functional [67],
is still missing. Lutsko studied hard-sphere crystals with bcc
and sc symmetry, beside the usual fcc crystal [68].

The crystal of a binary hard-sphere mixture with size
ratios between σs/σb = 0.95 and 0.85 was recently studied
within FMT using a Gaussian parameterization for the density
profiles [69]. The size ratios considered are chosen with a
reference system for interacting systems in mind. Several
interesting features found in simulations of binary mixtures
with highly asymmetric size ratios have not been addressed
with FMT functionals yet.

7. FMT approaches for other models

While the focus of this review is on the FMT for hard-sphere
mixtures, it is important to mention at least a few developments
for other systems that were inspired by it. Since this section is
short, it has to remain incomplete and can give only a taste
of the several branches of the theory of fluids and colloidal
mixtures that were influenced by Rosenfeld.

The ideas leading to FMT in d = 3 can also be applied in
2d . Rosenfeld derived a FMT functional for mixtures of hard-
disks [70], which is different from the two-dimensional limit
of the hard-sphere functional. While Rosenfeld employed the
same strategy, one important difference between two- and three
dimensions is that in even dimensions the deconvolution of the
Mayer- f function can only be performed approximately. A
similar problem arises for non-spherical particles [38, 39, 37].

Cuesta showed that a FMT functional for parallel hard
cubes can be constructed using the FMT structure [71], which
helps to study packing effects and sheds some new light
on FMT. One interesting development based on the FMT
for parallel hard cubes is the formulation of a lattice FMT
functional [72].

If the hard-sphere interactions are replaced by a step-like
repulsive pair interaction

Vi j(r) =
{

ε r < Ri + R j

0 otherwise,

it seems at first that FMT should be able to cope with this
system equally well as with the hard spheres. After all the
Mayer- f function is still a step function. Schmidt solved the
problem [73] starting from the 0d limit of the problem, and he
found that the modification in the pair interactions changes the
functional more than first expected.

Schmidt also derived FMT functionals for various models
of non-additive hard-sphere mixtures. The first functional was

for a model colloid–polymer mixture [35] within the Asakura–
Oosawa model [74, 75] with hard-sphere interactions among
colloids (c) and between a colloid and a polymer (p),

Vcc(r) =
{

∞ r < 2Rc

0 otherwise

and

Vcp(r) =
{

∞ r < Rc + Rp

0 otherwise,

while the polymer–polymer interaction vanishes, Vpp(r) = 0.
At low polymer concentration, the system behaves essentially
like hard spheres. At higher concentrations, however, if the
polymer is not too small, the system can undergo a phase
separation into a colloid-rich and a colloid-poor fluid. The
functional was first derived from the 0d limit [35], but it
was later shown [76] that the functional could be derived by
linearizing a functional for hard-sphere mixtures in the density
of the polymer. The functional for the model colloid–polymer
mixture was found to predict layering and wetting transitions
at a planar hard wall [77, 78] and allows one to study the
free interface between a colloid-rich and colloid-poor fluid
phase [78].

Schmidt also constructed a functional for the Widom–
Rowlinson model [79], which employs the pair interactions

Vii (r) = 0 and Vi �= j (r) =
{

∞ r < Ri + R j

0 otherwise,

which also displays a phase separation into two fluid phases.
The FMT functionals for the penetrable spheres, for the model
colloid–polymer mixture and for the Widom–Rowlinson model
all have a structure and level of complexity similar to that of
the hard-sphere functionals. The general case of a binary hard-
sphere mixture with non-additive diameter σ11, σ22, and

σ12 = 1
2 (σ11 + σ22)(1 + �)

with � �= 0 is significantly more complex and was also derived
by Schmidt [80]. The functional makes use of weight functions
that include derivatives of Dirac-delta distributions up to fifth
order and a matrix kernel for the free energy.

There are also developments inspired by FMT that
make use of the fact that FMT is a mixture theory. The
calculation of depletion potentials in hard-sphere mixtures
using the insertion route [81] is very efficient, but requires
a DFT for mixtures. The insertion route can be applied to
polydisperse systems [82], for the calculation of three-body
depletion interactions [83], and interestingly, also to compute
the depletion potential in non-additive hard-sphere mixtures
using the functional for additive hard-sphere mixtures [84].

The FMT functional for the model colloid–polymer
mixture [35] allows one to make contact with SPT, one of
the starting points of FMT. The central quantity of SPT is the
reversible work required to create a cavity in a fluid, large
enough to hold a particle [8]. This work can be connected
to the excess chemical potential and therefore be connected to
FMT [85].
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8. Implementation

In this section I briefly discuss a few details about the
implementation of a FMT functional. One important part of
the numerical implementation is the algorithm that minimizes
the functional. In section 8.1 I present a simple, yet robust
scheme based on the Piccard iteration. I highlight the structure
of FMT in two common geometries with planar and spherical
symmetry in sections 8.2 and 8.3, respectively. In these
geometries the calculation of the weighted densities can be
expressed in terms of one-dimensional convolutions, which
can be calculated efficiently in Fourier space. I present a way
to increase the accuracy of the computation of convolution in
Fourier space in section 8.4.

In the fluid phase, the inhomogeneous density profiles
share spatial symmetry with the external potentials. For
example, if the fluid is confined by planar walls (either a
single wall or a slit) then the external potentials depend only
on the distance perpendicular to the walls, which is denoted
here by z. In this case the density profiles also depend solely
on z. In the calculation of weighted densities the integration
over the other coordinates can be performed analytically so
that the three-dimensional convolutions in equation (6) can be
reduced to one-dimensional integrations. In the case of planar
and spherical geometry, the cases discussed in the following,
these one-dimensional integrations remain convolutions, which
allows for their evaluation in Fourier space. In cylindrical
geometry, however, one loses the convolution property by
performing two integrals analytically.

For the minimization of the density functional it is also
important to calculate the variations of the functional w.r.t. the
density profiles. In general, one obtains

δ�[{ρi}]
δρi (r)

= δFex[{ρi}]
δρi (r)

+ β−1 ln λ3
i ρi(r) + V i

ext(r) − μi = 0.

(30)
The variation of the excess free energy can be performed using
the structure of FMT

c(1)
i (r) = −β

δFex[{ρi}]
δρi(r)

= −
∑

α

∫
dr′ ∂({nα})

∂nα

δnα(r′)
δρi(r)

,

with the one-body direct correlation function of species i ,
c(1)

i (r).

8.1. Piccard iteration

The functional �[{ρi(r)}] and the one-body direct correlation
function c(1)

i (r) are all ingredients required for a minimization
of the functional using a simple Piccard iteration scheme.
This is a simple but robust algorithm. One starts with an
initial guess for the density profiles ρ

( j=0)

i (r), at iteration

step j = 0, and iterates the profiles until ρ
( j)
i (r) or the

grand potential �[{ρ( j)
i (r)}] no longer change according to a

threshold criterion.
Of course, there are more sophisticated algorithms,

e.g. based on a pseudo Newton algorithm [86, 87]. However,
they typically require the second variation of the functional
w.r.t. density profiles and will not be discussed here.

First the density profiles have to be initialized. One simple
choice is to set ρ

( j=0)

i (r) = ρi
bulk, wherever the external

potential allows a non-vanishing density. If the attractive parts
of the external potential are not too strong, one could also start
with the ideal gas solution ρ

( j=0)

i (r) = ρi
bulk exp(−βV i

ext(r)).
For strong attraction, however, this could easily lead to local
packing fractions close to or above 1, which are unphysical.

Using the guess of the density profiles at iteration step j ,
ρ

( j)
i (r), one can solve equation (30) formally to find [1]

ρ̃
( j)
i (r) = ρi

bulk exp(−βV i
ext(r) + c(1)

i (r) + βμi
ex).

Note that for this step the chemical potentials have been split
into the ideal gas contributions, which give rise to the prefactor
ρi

bulk to the exponential, and the excess contributions μi
ex. If

the input density profiles ρ
( j)
i (r) are close to the equilibrium

profiles, then ρ̃
( j)
i (r) will also be close to the equilibrium

profiles. However, especially at the start of the iteration, when
the input density profiles are far from the equilibrium ones,
ρ̃

( j)
i (r) can be quite rough approximations.

In order to moderate the iteration and to prevent the
procedure from diverging, it proves useful to mix the input
profiles with ρ̃

( j)
i (r) using a mixing parameter α

ρ
( j+1)

i (r) = (1 − α)ρ
( j)
i (r) + αρ̃

( j)
i (r).

It is important to choose α ∈ [0, 1] large enough to allow
for fast convergence, but also sufficiently small to prevent
instabilities in the iteration procedure.

It turns out that a smart choice of the mixing parameter is
very helpful. Here I describe a simple, yet powerful tweak of
the iteration scheme in order to improve the convergence.

There are two factors which limit the value of the mixing
parameter α. On the one hand, especially at the beginning
of the iteration, when the density profiles are far from the
equilibrium profiles, α has to be small in order to prevent
the local packing fraction n3(r) after mixing from exceeding
1—a value of n3 larger than 1 would clearly cause problems
in terms like ln(1 − n3) or 1/(1 − n3). On the other hand
α should be sufficiently large so that the functional of the
grand potential decreases after mixing. Both factors can be
taken into account by two steps. In the first step the smallest
value of α ∈ [0, 1] is determined that would cause n3(r) to
become 1 (if possible) after mixing. Since n3(r) before the
mixing and ρ̃i(r) are known this can be done easily. Once the
maximum of the mixing parameter, αmax is determined, one
can guess the optimal mixing parameter, αopt. For practical
purposes it proves useful to restrict the value of αopt to the
interval [0, 0.9αmax]. In figure 7 the full and the dashed vertical
lines mark αmax and 0.9αmax, respectively. In the second step
αopt is guessed from the behavior of the grand potential as a
function of the mixing parameter. �1 = �(α = 0) is known
from the last iteration step. While sophisticated line-search
algorithms are available for this problem, one should avoid
too many evaluations of the functional of the grand potential,
which also include the calculations of the weighted densities.
To this end one can make half of the maximal step, i.e. evaluate
�2 = �(0.45αmax). If the functional of the grand potential
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Figure 7. The mixing parameter α for the Piccard iteration has to be smaller than αmax (full vertical line) and is chosen in the interval
[0, 0.9αmax] so that �(α) decreases. If �(0.45αmax) < �(0), (a), then also �(0.9αmax) is evaluated. If �(0.45αmax) > �(0), (b), then
�(0.225αmax) is evaluated. A quadratic fit through these three data points allows one to guess αopt, the optimal value of the mixing parameter.

decreased, i.e. �2 � �1, then one also evaluates the functional
for the maximal step site �3 = �(0.9αmax), as depicted in
figure 7(a), otherwise, if �2 > �1 one makes a smaller step
�3 = �(0.225αmax), as shown in figure 7(b). Assuming a
quadratic form for �(α) (dotted lines in figure 7) one can
guess αopt from fitting a quadratic polynomial to �i , i = 1, 2, 3
and calculating that value of α that minimizes this quadratic
form.

8.2. Planar geometry

For the weighted densities in planar geometry one finds that

nα(r) = nα(z) =
∑

i

∫
dz′ ρi (z

′) ωi
α(z − z ′) (31)

with z the distance perpendicular to the wall. The one-
dimensional weight functions are ωi

3(z) = π(R2
i − z2)	(Ri −

|z|), ωi
2(z) = 2π Ri	(Ri − |z|), and �ωi

2(z) = 2πz�ez	(Ri −
|z|), with the unity vector in the direction normal to the wall
�ez . The remaining weight functions are related to ωi

2(z) and
�ωi

2(z) via ωi
1(z) = ωi

2(z)/(4π Ri ), ωi
0(z) = ωi

2(z)/(4π R2
i ),

and �ωi
1(z) = �ωi

2(z)/(4π Ri ).
From the definition of the one-body direct correlation

function and the structure of the excess free energy functional
within fundamental measure theory one obtains

c(1)

i (z) = −β
δFex[{ρi}]

δρi(z)
= −

∑

α

∫
dz′ ∂({nα̃})

∂nα

δnα(z ′)
δρi(z)

.

The main problem is to calculate the variation of the weighted
densities nα(z ′) w.r.t. the density profile ρi (z). The result (in
planar geometry) is quite simple

δnα(z ′)
δρi(z)

= δ

δρi(z)

∑

j

∫
dz′′ ρ j(z

′′)ω j
α(z ′ − z′′) = ωi

α(z ′ − z).

However, one has to be careful because, compared to
the argument entering the weight function of the weighted
densities, equation (31), the argument entering the calculation
of c(1)

i (z) is negative, i.e. z − z ′ becomes z ′ − z. For the scalar
weight functions this is unimportant, since the scalar weight
functions are even functions

ωi
α(z ′ − z) = ωi

α(z − z ′),

but the vector-like weight functions are odd functions

�ωi
α(z ′ − z) = −�ωi

α(z − z ′).

Taking this sign into account, it is possible to perform the
convolutions in Fourier space using FFT methods:

c(1)(z) = −
∑

α

FT −1

(
FT

(
∂({nα̃})

∂nα

)
∗ FT (±ωα)

)
,

where FT and FT −1 denote the fast Fourier transform and its
inverse, respectively.

8.3. Spherical geometry

If the external potential is spherical symmetric and the fluid
phase is considered, then the density profiles and the weighted
densities depend only on the radial distance r . Here only the
case r > Ri , i = 1, . . . , ν is considered, for which the scalar
weighted densities are given by

nα(r) = nα(r) = 1

r

∑

i

∫
dr ′ ρi(r

′)r ′ ωi
α(r − r ′).

The one-dimensional scalar weight functions are ωi
3(r) =

π(R2
i − r 2)	(Ri − r), ωi

2(r) = 2π Ri	(Ri − r), ωi
1(r) =

ωi
2(r)/(4π Ri), and ωi

0(r) = ωi
2(r)/(4π R2

i ) are basically the
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same as in planar geometry. The vector weighted densities are
somewhat more complicated:

�n2(r) = −�er
∂

∂r
n3(r)

=
{

n3(r)

r
�er − 1

r

∑

i

∫
dr ′ ρi (r

′)r ′ �ωi
2(r − r ′)

}

=
{

1

r 2

∑

i

∫
dr ′ ρi (r

′)r ′ωi
3(r − r ′)�er

− 1

r

∑

i

∫
dr ′ ρi(r

′)r ′ �ωi
2(r − r ′)

}

with the unit vector in radial direction �er and the weight
function �ωi

2(r) = 2πr �er	(Ri − r). The second vector
weighted density follows directly

�n1(r) =
{

1

r 2

∑

i

∫
dr ′ ρi (r

′)r ′ ωi
3(r − r ′)
4π Ri

�er

− 1

r

∑

i

∫
dr ′ ρi(r

′)r ′ �ωi
2(r − r ′)
4π Ri

}
.

The vector weighted densities are a sum of two convolutions.
Note the factor 1/r 2 in front of the first term.

For the calculation of the one-body direct correlation
function, one has again to distinguish between scalar and
vector weighted densities. The scalar terms can be treated
in an analogous way to those in the planar geometry. The
vector weighted density requires a bit more care, because in
the variation of the weighted density w.r.t. the density the first
term possesses a factor 1/r 2 and an even weight function and
the second term a factor 1/r and an odd weight function.

8.4. Convolutions in Fourier space

In planar and in spherical geometry the calculation of the
weighted densities and the one-body direct correlation function
can be reduced to a sum of one-dimensional convolution
integrals. This implies that their computation can be done
using the convolution theorem in Fourier space. The use of
fast Fourier transforms (FFT) can speed up the calculation
considerably. However, it is important to note that the direct
use of FFT methods for the calculation of the convolution of
two functions, say f (x) and g(x), results in
∫ xN

x1

dx f (x ′)g(x ′ − x) ≈ FT −1(FT ( f ) ∗ FT (g))

= �x
N∑

j=1

f j gi− j ,

which corresponds to a very simple quadrature formula. In
real space the implementation of more accurate quadrature
formulae would be straightforward, i.e. by applying a closed
extended formula, [88]
∫ xN

x1

dx f (x ′)g(x ′ − x) = �x( 3
8 f1gi−1 + 7

6 f2gi−2

+ 23
24 f3gi−3 + f4gi−4 + · · · + fN−3gi−N+3

+ 23
24 fN−2gi−N+2 + 7

6 fN−1gi−N+1 + 3
8 fN gi−N ) (32)

Figure 8. The convolution of a density profile (dashed line) with a
weight function (full line) or the modified weight function (dotted
line). The modification of the weight function, highlighted by the
gray shaded area, increases the accuracy of the convolution
computed in Fourier space. However, in the case of a hard wall,
where the density profile jumps discontinuously to zero, as shown in
this figure, special care is required for small distances from the wall.
As indicated by the modified weight function, that only partly
overlaps with the density profile, the modification (gray area) on the
left does not contribute to the convolution since it is convolved with a
part of the density profile that vanishes. In the region z < 2Ri the
modified convolution has to be corrected.

with an error of the order O(�x)4. Here, however, the aim is
an implementation in Fourier space. Note that the convolutions
are products between weight functions with a short range and
a function with a range that is confined only by the geometry
defined by the external potential, i.e. the density profiles or the
derivatives of the excess free energy density w.r.t. a weighted
density. This is shown in figure 8. It seems natural to adapt
equation (32) in Fourier space by modifying the effective one-
dimensional weight functions at the boundaries of their range
by

ω̃i
α(x = ±Ri) = 3

8ωi
α(x = ±Ri)

ω̃i
α(x = ±(Ri − �x)) = 7

6ωi
α(x = ±(Ri − �x))

ω̃i
α(x = ±(Ri − 2�x)) = 23

24ω
i
α(x = ±(Ri − 2�x))

while leaving it unchanged otherwise. This modification in the
gray shaded area, indicated by the dotted line as compared to
the original weight function denoted by the full line in figure 8,
has the advantage that the convolution is as fast as the original
convolution but more accurate. However, if density profiles
at a hard wall are considered, then the convolution product
between density profiles and weight functions has to be slightly
modified in the range close to the wall, because the density
profiles vanish discontinuously at the wall, as shown in one
case in figure 8.
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9. Conclusion

FMT is an elegant and powerful approach to DFT for hard
spheres, as I have hopefully convinced the reader with this
review. Based on the insight that for hard spheres the
Mayer clusters have a purely geometrical meaning, Rosenfeld
used weight functions that correspond to the fundamental
geometrical measures of individual spheres and thereby created
an approach that can account not only for pure systems but also
for mixtures.

I have reviewed three different approaches to FMT: first
Rosenfeld’s original approach that, based on ideas from SPT
and PY integral equation theory, resulted in a functional
that could successfully describe fluid properties, but failed to
account for the freezing transition. The second approach, based
on the insight of dimensional crossover, corrected the problem
with freezing. The third approach, based on accurate mixture
equations of state, improved the thermodynamics underlying
FMT.

FMT is successful and accurate in describing the
inhomogeneous structure of hard-sphere fluids and solids, and
corresponding thermodynamic quantities. In this review I have
described several tests for the accuracy of both the structure
and thermodynamic quantities, such as the wall surface tension
and the excess adsorption at a planar hard wall. There are small
deviations between the results of different versions of FMT.
However, present simulation results do not allow one to clearly
decide which result is most accurate.

I have concluded the review with a few hints on the
implementation of FMT. These hints are hopefully useful
both for readers new to FMT as well as to those with some
experience.

This review has focused on FMT for hard-sphere mixtures.
I have briefly mentioned some closely related approaches for
spherical particles in section 7. There are also interesting
developments for non-spherical hard particles, which I did not
discuss here. Interested readers are referred to [36].

FMT provides a reliable framework for hard-sphere
reference systems. For the one-component hard-sphere fluid
one remaining problem is the small deviation from computer
simulation data of the structure at fluid densities close
to freezing, as indicated in figure 1(b). For hard-sphere
mixtures, high size asymmetries present the most challenging
issue. Still one can consider the hard-core repulsion well
taken care off by FMT. In my opinion, the most important
future developments in classical equilibrium DFT will be
the treatment of soft repulsions and attractions, additional
to the hard-core repulsion at short distances, beyond simple
perturbation theory approaches.
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